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Integral Equation Solution to the Skin
Effect Problem in Conductor Strips
of Finite Thickness

Jean-Fu Kiang, Member, IEEE

Abstract —The skin effect of single and coupled conductor strips of
finite thickness is analyzed using the dyadic Green’s function and the
integral equation formulation. Galerkin’s method is used to solve the
integral equation for the dispersion characteristics. The effects of the
geometrical and electrical parameters on the conductor loss are investi-
gated. Results are compared with the literature and shown to be in good
agreement. This approach is very useful for analyzing the electrical
properties of interconnects in high-performance computer circuitries.

1. INTRODUCTION

O calculate the conductor loss of microstrip lines, a

perturbation method has usually been used. The surface
currents for the lossless case are obtained first by either a
quasi-TEM approximation [1]-[3] or a full-wave approach
[4]. Then, the conductor loss is evaluated by using the sur-
face resistance and the surface current. By using the surface
resistance approximation, it is assumed that the strip thick-
ness is much larger than the skin depth.

In [5], the equivalent surface impedance is used in the
boundary condition from which an integral equation is de-
rived. The conductor loss is then obtained by solving this
integral equation. As in [4], it is assumed that the thickness
of the strip is at least several skin depths, and is much
smaller than the width of the strip. In [6], a complex resistive
boundary condition is applied to solve for the propagation
constant of thin superconducting striplines. It is assumed
that the strip is thin compared with the superconducting
penetration depth.

In {7} and [8], a skin loss expression is derived based on the
incremental inductance rule, which was first proposed by
Wheeler [9]. In this technique, the thickness of the conduc-
tors exposed to the electric field should be greater than
several skin depths.

Finite element methods [3], [10]-[12] have been used to
calculate the conductor loss. These approaches are based on
either an electrostatic scalar potential [3] or a magnetic
vector potential [10]-[12]. In the magnetic vector potential
approach, only the longitudinal current component is consid-
ered. In [10], the ac resistance is derived from the power loss
calculated from the current distribution in the cross section.
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In [11], the thickness of the strip is assumed to be much
smaller than the skin depth, and only surface current is
considered.

In [13], a finite element method is used to calculate the
attenuation constant of a copper microstrip at 77 K. The
results are compared with the closed-form solution obtained
by neglecting the effect of fringing fields [14]. In [15], a
phenomenological equivalence method is proposed for char-
acterizing a planar quasi-TEM transmission line with a thin
normal conductor or superconductor strip. This method is
based on various empirical formulas valid under different
conditions.

In [16], a perturbation series and coupled integral equa-
tion approach is used to calculate the frequency-dependent
resistance and inductance for quasi-TEM transmission lines
with conductor strip of arbitrary cross section. A diffusion
equation and a Laplace’s equation are solved interior and
exterior to the conductor, respectively. Then, the boundary
condition is imposed on the interface to obtain a coupled
integral equation from which the frequency-dependent resis-
tance can be obtained.

In [17], the ac resistance of cylindrical conductors is calcu-
lated by first assuming an axially independent TM mode
excitation. Then the field expressions in the regions exterior
and interior to the conductors are derived in terms of equiva-
lent electric and magnetic surface currents. The continuity of
tangential fields on the conductor surfaces are imposed to
obtain the frequency-dependent resistance.

The skin effect becomes important in high-performance
computer circuitries [18], [19] and superconductor transmis-
sion lines [13]-[15], [20]. In [14], the surface impedance for
both the normal-state and the superconducting striplines are
derived. It is assumed that the width of the stripline is much
larger than the dielectric thickness so that the fringing field
can be neglected. In [20], an approximate solution of propa-
gation and attenuation constants for superconductor inter-
connects is presented. However, only the TM mode is con-
sidered, and the effects of interconnect cross section and the
fringing field are not taken into account.

In this paper, an integral equation formulation using the
dyadic Green’s function [21]-[23] is derived to solve for the
dispersion relation of single and coupled conductor strips
with finite thickness. In Section II, the integral equation
formulation for a finite number of conductor strips is de-
rived. In Section III, the Galerkin’s method is used to obtain
the matrix eigenvalue equations. Numerical results and dis-
cussions are presented in Section IV.
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Fig. 1. Geometrical configuration of N conductor strips embedded in
a multilayered medium.

II. INTEGRAL EQUATION FORMULATION

In Fig. 1, there are N conductor strips of arbitrary cross
section embedded in layer () of a planar stratified medium.
The whole structure is assumed to be uniform along the
propagation direction y. Then, the electric field in layer (7)
can be represented by the dyadic Green’s function and the
equivalent conduction and polarization current in the con-
ductor strips as

E(r) =iapof[ deV’(:?,,(r, P Jog(r)

—iwp, [ / deV'E,,(r,r') Ac(FEF) (1)

where J (r)= Ao (r)E(r) with Ao(r)=o(r)— o, — iw(e(r)
- ¢;). The quantities e(r) and o(r) are the permittivity and
conductivity, respectively, in the cross section of the conduc-
tor strip; €; and o, are the background permittivity and
* conductivity, respectively, in layer (I); and V is the space
occupied by the conductor strips. The dyadic Green’s func-

tion G, (r,r") can be represented in the spectral domain as
[22]

= . l o ik = , fZA A
Gy(r,r)= 5;7/ _wdkse' wremrog (kg 2,2") — Ei?;(’“")

(2)
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where
ky= %k, + Sk,
ry=xx+3jy
r!=xx'+ yy’.

Here, the time-harmonic convention of e~ is used. The
first term on the right-hand side of (2) is the principal value
part of the dyadic Green’s function, and the second term: is
the source dyadic. The source dyadic term shown in this
spectral-domain, solution is equivalent to using a thin disk as
the exclusion volume in a principal value integration over a
current region in the space domain. g,(k,, z, z') is the Fourier
transform of the principal value part of (_;,,(r, r’) with re-
spect to r,. _

For z> z', the explicit form of g,(k,,z,z') is given by
[21]-[23]

1
ki, (1— RTERTE2kit)

§ll(ks’z>’z'<)=

. [i,(klz)eikzzfz + REEI;}( - klz)eikzz(th—zl)]
[ ye ™1+ RTEf(~ ey )ero]

1
+ -
k(1= RERTI7)

. [5(/([2)6”(”2’ + RB\;IQ( _ klz)eik[z(Zhl_zl)]
- [ﬁ(klz)e—ikhZI + RrIr‘WI\;Iﬁ( - klz)eivk&ZI]
' (32)
and for z < z', we have

1

TE p1E 2 .k
klz(l_RulRme I')

Eulky,z,25)=

[A(= ke um + RTEA(K,, ) el*ew)
(A= ki) et + R (k) ets@hmeD]

1
ki (1— RUIRTekit)

+

. [ﬁ( - klz)e—ik“z[ + R’lr-‘\l\;lﬁ(klz)eiklzzl]

(8= ki) etest+ ROTO Ky, ethuhieD]
(3b)

where z; and z/ are the local coordinates defined as z;=
z+d;, z/=z+d, and

A £k, — 9k
h(t k) ==~
k ,
Ok =F o=+ i3 )

where k, =k, k;, =yk? — k2 with Im(k,,) > 0.
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In (3), RTY and R, are the reflection coefficients of the
TM and the TE modes at the upper boundary of layer (/),
and RTY and R™E are the reflection coefficients of the TM
and the TE modes at the lower boundary of layer (/). They
can be obtained recursively as

Rig_n+ Rau(l—l)eﬂk"”’zh’“‘

& = - , a=(TE,T™
VT 14 Ry RY g gye e vl ( )
(5a)
2ik gy 1yihre
N Rii41y+ RE e vl
nr= 1+ R¢ R¢ 2k Py ? «= (TE’TM)
+ Ry nRAg+ye
(5b)
where Rj,_;y and Ry, ,, are the Fresnel reflection coeffi-
cients of the a« mode across the interfaces at z = —d,;_, and
z = — d;, respectively. The explicit forms are
k- k(lil)z ™ elilklz - flk(lil)z

TE __ _
Rygsny= Ryiin=

ki, + k(lil)z €11k + Elk(lil)z

(6)

Substituting the dyadic Green’s function in (2) into (1), we
obtain

iopgAo(r)

E(r)+ k—IZZEz(r)

- % [ffa [] ket e oaa(r)

"&u(k,,z,2') E(r') (7
where the source dyadic contribution has been collected to
be the second term on the left-hand side. If the observation
point is outside of the source region, this term vanishes
automatically.

We assume that the pth eigenmode can be represented as
E (p)e’™, where 7 is the propagation constant in the y
direction, and p = #x + £z. Equation (7) can thus be reduced
to

iopoAo(p) |

E,(p)+ o 2E,.(p)
14

-~ Z—‘: / /S dp'Aa(p) fjwdkxe”‘x(""")

'S:’u(kx,”fhz»l')'Ep(P') (8)
where § is the cross section of the conductor strip, with
Aa(p)#0.

Consider two identical conductor strips embedded in layer
(1) and located symmetrically with respect to x = 0. For such

a structure, both an even and an odd mode exist. We define
the even (odd) mode as a mode with E, an even (odd)
function, and H, an odd (even) function of x. A magnetic
(electric) plane can be inserted at x = 0 without affecting the
field distributions.

The coupled integral equation can be rewritten as

iw/J«OAU(P) n
~————ZE,.(p)

E (p)+
»(P) ¥

- M ’ ’ ® thk (x—x")
- /Sldp Aa(p)/_wdkxe
'Ell(kxanaz’zl)'Ep(p,)
_ “ko ’ ’ * th (x—x")
- [Szdp Ao (p )f_wdkxe

Zy(ky,m.2,2) E,(p), ponSiorS, (9)

where S; and §, are the cross sections of the conductor
strips. The source dyadic contribution has been collected as
the second term on the left-hand side of (9). On the right-
hand side of (9), the first (second) integral represents the
contribution from the equivalent conduction and polariza-
tion current in the first (second) conductor strip.

In the next section, the Galerkin’s method is used to solve
the integral equations (8) and (9) for the dispersion relation
nw).

III. NUMERICAL SOLUTION

Consider a conductor strip with a rectangular cross section
of width w and thickness ¢. We first divide the width and
thickness into N and M segments, respectively. The length
of the nth segment in the x direction is w,, and the length of
the mth segment in the z direction is ¢,, where w;
+ - +wy=w and t;+ --- +1t,, =t The center coordi-
nate of the (n,m) cell, S,,,, is denoted by (x,,z,,) with
lsngNand l<m< M.

The electric field of the pth eigenmode on the cross
section S can thus be represented by a set of pulse basis
functions as

N M
Ep(p)z Z Z Z agmﬁpn(x_xn)Rm(z_Zm)
B=x,y,zn=1m=1
(10)
where
P(x x,,)={’ Xo=W,/2<x<x,+w, /2 (11a)
0, elsewhere
R (z zm)={1’ Zp,—t,/2<z<z,+1,/2 (11b)
, elsewhere.
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Substituting (10) and (11) into (8), we have

' N M .
Z Z Z agmBPn(x - xn)Rm(Z - Zm)

B=x,y,zn=1m=1

) [1 N iwpgldoy,

k? 8"’]
N

Wi

== =§ Yy

M
e Z agmAa'nm
B

y,zn=1m=1

[, e B - xR 2)

Xf_wdkxeikX(x_x’)Ell(kx>7’1Zyzy)'ﬁ, pon S (12)

where L is the Kronecker delta function, which is equal to
one when « = 3, and is equal to zero when a # 8, and Ag,,,
is the value of Ao(p) calculated at (x,, z,,).

For conductor strips of arbitrary cross section, we can
approximate the cross section by a mosaic of rectangles, and
a field expression similar to (10) can be obtained.

Next, we choose the same set of basis functions as the
testing functions, and apply the Galerkin’s method to (12).
Taking the inner product of &P.(x —x,)R,(z - z,) with
(12), we obtain

N M
—TWHg Z Z Z aEon'nm
1

B=x,y,zn=1m=

[ ke (— k) B 835 )

ag, (13)

iopgAa,,
—__1—6(12

where e =x,y,z; 1<r<N and 1<qg<M; A4,, is the area
of S,,; P(k,) is the Fourier transform of P,(x) with

A 1 wn/2
Pn(kx) =5

. sin(k,w, /2)
dx e <P =
= eheP, () = =

(9

-w,/2

and §27(k,,n) is the a8 component of the dyadic g9(k,,m)
with

g (k,m) = f, dzR(z~ z,)
o

jl‘ dz'Rm(Z,‘ zm)éll(kx’n’z’z’) (15)

where [, is the domain of R, (z - z,). The integral in (15)
can be done analytically because the variables z and z' of
the dyadic Green’s function appear only in the exponential
terms as shown in (3).
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By utilizing the symmetry properties of ﬁ,,(kx) and
835k ;,m) with respect to k, (13) can further be reduced to

N M
_277-(‘).“/0 Z Z - Z afmAa'nm

B=x,y,zn=1m=1

) j;) dkxﬁr( kx)ﬁn(kx)pi/r‘;?nm(kx’ 77)

N M a
Z Z 8aﬂ8rn6qunm

yizn=1m=1

= X
B=x,

iopglAo,,,
-[1 9 (16)

+ —a 2 5 ﬂz] a?,
where
Wbk sm)

Cos kx(xr - xn)gAgI’?(kx’n)’
(a,B) = (x,x),(y,‘y),(y,2),(z,y),(z,2)(17)
isink,(x, - x,)838(k,,m),

(a,8) =(%,9),(x,2),(y,%),(2,%).

Equation (16) is a matrix equatiori of the form

D

B=x,y,zn=1m=1

zeB, al, =0

rqg,nm%nm (18)
where a=x,y,z; 1<r< N and 1< g < M. The cigenvalue

n can thus bé obtained by setting the determinant of the Z
matrix in (18) to zero, i.e.,

det[Z(w,7)] =0. (19)

Muller’s method is then used to solve for the eigenvalue
numerically.

To solve the integral equation (9) for two symmetrical
conductor strips, we choose the same set of pulse basis
functions as in (11) to represent the electric field on the
cross section S, as

N M .
Ep(p) = Z Z Z agmBPn(x - xn)Rm(z - Zm)v

B=x,y,zn=1m=1
ponS,. (20)

By symmetry, the electric field on the cross section §, can be
represented as

N M
Ep(p) = Z Z Z Igagmﬁpn(x + X,,)R,"(Z - Z,,,),

B=x,y,zn=1m=1
pon S, (21)

where the subscript £ in If designates the even mode when
¢ = ¢, and the odd mode when £ = o. The definition of 1§ is

I£={l’ (f,ﬁ)*’(O,X),(e,y),(e,z)

-1, (E’ﬂ)=(e7x)»(01})),((),2). (22)
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Substituting (20) and (21) into (9) for p on S;, we have

N M .
Z Z Z agmﬁpn(x - xn)Rm(Z - Zm)

B=x,y,zn=1m=1
632}
Wig

iwpglo,,,
. +_—2
ki
N M
== 4 E Z Z aEon-nm
T B=x,y,zn=1m=1

_/:/:9 dp,[Pn(x,_.xn)+I§BPn(x,+xn)]Rm(z/_Zm)

f dk % (k ,m,2,2')-B, pons,.

(23)

Owing to the symmetry of the structure, only the electric
fields on §; need to be tested when applying the Galerkin’s
method. Taking the inner product of @P,(x — x,)R (z — z,)
with (23) and utilizing the symmetry properties of the inte-
grand with respect to k,, we have

N M
_277‘0#0 Z Z Z aEmAUnm

B=x,y,zn=1m=1

[k, Bk, ) B (kWO k)
0

N M
= Z E Z Baﬁ‘srnsqunm
B=x,y,zn=1m=1

iopgAc,
[ + —~—"’15B2}a,€m (24)

2
ki
where e =x,y,z; 1<r<Nand 1 <qg< M; and

WaPEl k)

ra,nm
[cos k. (x,—x,)+Ifcosk (x,+ xn)]ggg‘(kx,n),
_} (aB)=(5,%),(y,¥),(y,2),(2,9),(2,2)
i[sin k,(x, —x,) + I sink,(x, + x,)] 25k, ),
(a,8) =(x,y),(x,2),(y,x),(z,x).
(25)

Equation (24) is a matrix equation, and the eigenvalue n
can be obtained by setting the determinant of the matrix to
- ZEro.

IV. REsuLTs AND DISCUSSIONS

In Fig. 2, we present the attenuation constant of a mi-
crostrip line of finite thickness embedded in a homogeneous
medium. The results from a finite element method [13] are
also presented for comparison. The deviation in the high-
frequency range may be due to the truncation of structure in
the finite element method.

Next, we present the propagation and attenuation con-
stants of a stripline in Fig. 3. In this figure and the rest of the
results, normal temperature is considered. Both copper (Cu)
and molybdenum (Mo) are used to compare the effect of
conductivity since these two materials are commonly used in
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Fig. 2. Attenuation constant of a microstrip line of finite thickness
embedded in a homogeneous medium, w =2 um, € = 3.5¢,, ¢, (77°) =
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the fabrication of interconnects in computer circuitries. For
this structure, we divide the strip cross section into 14 by 6
small rectangles. The size of the rectangles closer to the strip
surface is chosen to be smaller than the size of those farther
away from the surface. Note that at the frequency of 100
MHz, the skin depths of Cu and Mo are about 6.54 um and
11.49 pm, respectively. It is also found that although the
magnitude of the transversal current is much smaller than
that of the longitudinal (y) component, the results of the
attenuation constant become unreasonable when the
transversal currents are neglected. The computation was
done by using an IBM 3090 /600E mainframe computer, and
the computation time is about a few seconds to obtain each
curve.

In Fig. 3, it is observed that the propagation constant
deviates slightly from that of the TEM mode. The attenua-
tion constant approaches a constant as frequency is reduced,
and becomes proportional to the square root of frequency at
higher frequencies. The result for Mo strip and Mo ground
plane is close to that for Mo strip and Cu ground plane. This
implies that the conductor loss is mainly contributed by the
strip.

In Fig. 4, we present the attenuation constant of a stripline
where the strip is located closer to the lower ground plane.
The attenuation constant is larger than that of the corre-
sponding case in Fig. 3. Because the strip is closer to the
lower ground plane, the field strength increases below the
strip. Although the field strength is smaller between the strip
and the upper ground plane than in Fig. 3, the overall
conductor loss is increased. The propagation constant is
close to the results in Fig. 3(a), and is not presented.

In Fig. 5, the cross section of the structure is scaled down
by a factor of 10, and the frequency range is scaled up
proportionally. It is observed that the propagation constant
deviates more from that of the TEM mode than in Fig. 3.
Meanwhile, the attenuation constant is much larger than
that in Fig. 3.

In Fig. 6, we present the attenuation constant for a stripline
with a square cross section of the same area as the cross
section of the stripline in Fig. 3. The attenuation constants in
both cases are roughly the same.
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t=25pm, h=600 pm, z,;=200 pm, z_, =400 um, € = 10e;, oy, =
1.92x 107 S /m.
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Fig. 10. Attenuation constant of four coupled striplines: w =100 wm,
t=25 um, h=600 pm, z,=200 pum, z.,=400 pum, s=100 um,
€ =10¢,, oy, =1.92%107 S/m,

In Fig. 7, the attenuation constants of two coupled
striplines are presented. The separation s between the two
strips is defined as the shortest distance between them. The
attenuation constant of the odd mode is larger than that of
the even mode owing to the difference of field distributions.

In Fig. 8, we present the propagation and attenuation
constants of both modes as a function of the separation
between the two strips. It is observed that the results for the
even modce are Iess sensitive to the separation than the odd
mode. This is because the field distribution of the odd mode
changes more drastically than that of the even mode as the
separation is changed.

The attenuation constants of two coupled striplines in an
up—down arrangement are presented in Fig. 9. Again, the
attenuation constant of the odd mode is larger than that of
the even mode. The propagation constants for both modes
are very close to that in Fig. 3(a) and hence are not pre-
sented.

Next, we present the attenuation constant for a symmetri-
cal structure consisting of four strips as shown in the inset of
Fig. 10. There are four fundamental modes, indicated by ee,
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Even/Odd Parity of Field Components
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Fig. 11. The even/odd parity of the electric field components, the first

(second) symbol is with respect to the horizontal (vertical) center line:
+ even symmetry; — odd symmetry.
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Fig. 12. Dispersion relation of four coupled striplines: f = 100 MHz,

w=100 pm, t=25 um, A=600 pm, z,, =200 pum, z,=400 um,
€ =10€g, opo=1.92X107 S/m. (a) Propagation constant. (b) Attenua-
tion constant.
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eo, oe, and oo, respectively. The first symbol indicates the
symmetry with respect to the horizontal center line, and the
second symbol indicates the symmetry with respect to the
vertical center line. The even/odd parity of all the field
components is shown in Fig. 11, where the + (—) sign
represents an even (odd) symmetry with respect to the center
line.

As shown in Fig. 10, the attenuation constant of the ee’
mode is the smallest, and that of the oo mode is the largest.
This again is due to the field distributions of different
modes. The propagation constants of these four modes are
all close to that of the TEM mode for a single stripline.

In Fig. 12, we preseni the results ‘of four different modes
as a function of horizontal separation. It is observed that the
ee and oe modes are less sensitive to the horizontal separa-
tion because these two modes have an even symmetry with
respect to the vertical center line.

V. CONCLUSIONS

An integral equation formulation utilizing the dyadic
Green’s function is proposed to calculate the conductor loss
in a rigorous way. Galerkin’s method is used to solve the
integral equation for the dispersion relation where the con-
ductor loss is incorporated in the attenuation constant. The
attenuation properties for different stripline structures used
in the packages of high-performance computer circuitries are
presented.
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